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An efficient numerical method is developed for solving nonlinear wave equations
typified by the Korteweg—de Vries equation and its generalizations. The method uses a
pseudospectral (Fourier transform) treatment of the space dependence together with a
leap-frog scheme in time. It is combined with theoretical discussions in the study of a
variety of problems including solitary wave interactions, wave breaking, the resolution
of initial steps and wells, and the development of nonlinear wavetrain instabilities.

1. INTRODUCGTION
A number of basic equations in the study of nonlinear waves take the form

U+ f(u) uy+ Lu =0, (1)
where f(u) is a function of ¥ and Z is a linear operator with constant coefficients. We shall be
particularly interested in the original Korteweg~de Vries equation

U+ Uy + Uy = 0, ) (2)

Vol. 289. A. 1361. 32 [Published 2 May 1978

The Royal Society is collaborating with JSTOR to digitize, preserve, and extend access to éﬁ%}ﬁ

Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences. STORS
Www.jstor.org


http://rsta.royalsocietypublishing.org/

'\
/N
=0\

/|

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS

y \

THE ROYAL A

PHILOSOPHICAL
TRANSACTIONS

AL A

A A

N

/=0

SOCIETY

OF

OF

Downloaded from rsta.royalsocietypublishing.org

374 B.FORNBERG AND G.B. WHITHAM

its modified forms U+ (p+1) wPuy+u,,, = 0, p = integer, (3)

and a generalization of the linear part leading to

w+u%+}f;Kw—gnggnd§=o, (4)

where K(x) can be chosen to give various dispersive effects. The equations
t+ B[y + s = 0, (5)
t + ([2e|%0) g+ Uz = 0 (6)

for a complex u, will also be studied briefly.

A numerical method is developed for the periodic initial value problem in which « is a pre-
scribed function of x at ¢ = 0 and the solution is periodic in x outside a basic interval 0 < x < L.
For most of the problems considered, L may be chosen large enough so the boundaries do not
affect the wave interactions being studied. The method is applied in investigations of (a) solitary
wave interactions, (6) wave breaking in the case of (4), (¢) solutions for initial steps and wells in
the case of the Korteweg—de Vries equation, and (d) the instability of finite amplitude wavetrains.

2. THE NUMERICAL METHOD

The method will be described for the Korteweg-de Vries equation (2), but can be implemented
for a broad class of equations (1), with obvious changes in the various formulas. This is a Fourier
or pseudospectral method (Kreiss & Oliger 1972; Fornberg 1975) in which u(x, £) is transformed
into Fourier space with respect to x, and derivatives (or other operators) with respect to x are
algebraic in the transformed variable.

For ease of presentation the spatial period is normalized to [0, 2x]. This interval is discretized
by 2N equidistant points, with spacing Ax = n/N. The function u(x, ¢), numerically defined only
on these points, can be transformed to the discrete Fourier space by

{ oN-

1 .
N u( jAx, t) eIN, o

v=20,+1,..., £ N.

l(v,t) = Fu =

The inversion formula is

. . 1 i
u(jAx,t) = Fl = ) ZV: 4(v, t) eHIN, (8)

where only one half of the contributions at v = + N are included in the sum over v. These trans-
forms can be performed, efficiently with the fast Fourier transform algorithm (Cooley, Lewis &
Welch 1969, 1970; Cooley & Tukey 1965).

With this scheme, #, could be evaluated as F-Y{ivFu}, u,,, as — F~Y{iv3Fu} and so on. Combined
with a leap-frog time step, the K. de V. equation would then be approximated by

u(x, £+ Ab) —u(x, t — Ab) + 2iuAtF{vFu} — 21 AtF-Y{v3Fu} = 0. (9)
We make a modification in the last term, however, and take
u(x, t+ At) —u(x, t— At) + 2iuAtF-Y{vFu} — 21F~{sin (v®At) Fu} = 0. (10)

Since sin (¥3At) = v3At + O(A#) the two methods are identical in the limit A decreasing to zero.
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NONLINEAR WAVE PHENOMENA 375

We describe now the idea behind (10). All consistent difference approximations to a differential
equation are accurate for low enough wavenumbers but, in general, they lose accuracy rapidly
for increasing wavenumbers. This applies in particular to the leap-frog time difference in (9).
If we consider high wavenumbers of  in (9) the term #,,, dominates ux,. Equation (9) becomes

essentially
u(x, ¢+ At) — u(x, ¢ — At) — 21AtF-Y{v3Fu} = 0, (11)

as an approximation to Uy + Uy, = O. (12)
Equation (10) becomes similarly

w(x, i+ At) — u(x, t— At) — 20F-Ysin (v3Af) Fu} = 0. (13)

The fundamental difference between (11) and (13) is that equation (13) is not subject to any
differencing errors. It is exactly satisfied for any solution of (12), i.e. for any » and Af, no matter
how large. This follows from the solution of (12) for one wavenumber v,

u(x,t) = eV@h),

which satisfies u(x, i+ At) = e"My(x, ),
u(x, t— At) = e Aty (x, 1),
Therefore u(x, t+ Af) —u(x, t — At) — 2isin (v3Af) u(x,¢) = 0.

The computational cost for (9) and (10) are in both cases three fast Fourier transforms per
time step. (This increases to four if we use a conservation form with g, (u) replacing f () 4, in (1).)

The next section contains an analysis of the linearized stability condition for this scheme. The
accuracy of the scheme is not discussed until the last section (since the analysis depends on some
theory for unstable wavetrains). Appendix B contains a discussion on nonlinear instabilities and
‘aliasing errors’. It also contains, in table 3, technical data for the different computations.

The numerical calculations presented in this paper were carried out in single precision
(accuracy between 6 and 7 decimal digits) on the IBM 370/158 computer at the California
Institute of Technology. A real problem with 128 mesh points in the period required approxi-
mately 25 ms per time step (independent of dispersion relation).

The present calculations were intended only for graphical use. The step sizes At and Ax were
chosen to make all errors in quantities like wave shape, speed and position safely below the level
that can be measured from the diagrams. Whenever analytical solutions were available, they
were used to verify this accuracy. Any arbitrarily high accuracy can be obtained by refining A¢
and Ax (and changing to higher precision arithmetic). When At is halved, the overall error due
to the time discretization can be expected to decrease by a factor of four (since the scheme is
second order accurate in time). Both practical experience and the analysis in §9 show that a
halving of the space step will reduce the spatial discretization error by up to several orders of
magnitude. This rate of convergence is unmatched by any finite difference scheme (a collection of
such schemes for the K. de V. equationis given by Vliegenthart (1971)) or split step scheme which
partly relies on finite differences (Tappert 1974). A purely spectral scheme would however have a
potential accuracy similar to the present method. In such schemes the differential equation is
transformed to Fourier space. The components for different wavenumbers are advanced in time
numerically. Simple nonlinearities like uu, have to be handled as convolutions of Fourier com-
ponents. Schamel & Elsisser (1976) compare the accuracies of one pseudospectral implementa-

32-2
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376 B. FORNBERG AND G.B. WHITHAM

tion and a spectral scheme for K. de V.-type equations. They found disastrous ‘aliasing errors’ in
the pseudospectral scheme. Since no such errors have been observed in the present calculations,
their conclusions are not relevant to our implementation.

3. LINEAR STABILITY ANALYSIS OF THE NUMERICAL METHOD
We consider the linear model equation
Uy + o, +uy,, = 0, oconstant, (14)
approximated in the proposed method by
u(x, t+ At) —u(x, t — Af) + 2ia AtF-YvFu} — 21F~{sin (v3At) Fu} = 0, (15)

and use standard Fourier analysis to determine the condition which has to be imposed on the
time step At for stability. We look for a solution to (15) of the form

u(x, t) = kbAteive,
Substitution in (15) gives

KEHADIAL e _ jlt=ADIA T = 2] sin (p3AL) KAtel® — 2ipa AtktIAteire,
ie. k2= 2if (At,v,a) k—1 = 0,
where ' S(Atyv, ) = sin (v3At) — vaAt.
The scheme is conditionally stable if and only if f (Af, v, a) is real and less than one in magnitude.

Let us again assume for simplicity that the period is [0, 2n] and that this interval is discretized with

2N equidistant meshpoints, i.e.
Ax =m/N.
The wavenumber » takes the values
v=20,+1,..., + N. (16)

We want to find the largest value of At such that

|f(At,p, )] <1 (17)
is true for all v in (16). The most severe restriction on Afis imposed for the v which are largest in
magnitude, i.e. for v = + v ... Vi = N = n/Ax. The function

. w3 b
S (A Viyay, &) = sin [At (—A'?c) ] - At-A?ca

is rapidly oscillating as a function of A¢ with maxima and minima approximately

T 14
1- Ao —1—At2—A%oc, 1—At3~£;oc, —1- At cte,,

taken for

Ax3 3Ax3 5Ax3 7Ax3

At=Atlz'2—7—t§, A5=At2%2—n2—, At:At3z—2—n2—, At=At4z—2F-,

respectively. If « is positive the inequality (17) is valid up to the second extremum, i.e., the
stability condition becomes

At 3
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NONLINEAR WAVE PHENOMENA 377

The instance of & negative would require Az/Ax® < 1/2n2 because of the first extremum, but this
case can easily be circumvented. If we write (14) as

U+ (6 + OL) Uy+ (uaz.m:"“ cux) =0,

we can choose the constant ¢ to make (¢ +a) positive. We have only to replace « by (¢+a) and
sin (v3A¢) by sin (V3At— ¢vAtf) in (15) to be in the previous instance.

Stability conditions for some straightforward finite difference approximations of (14) (or (12)
for Ax small) are given in table 1. Here u, is approximated by leap-frog and u,,, by compact
centred approximations. The limit of finite difference methods with orders of accuracy increasing
to infinity is identical to the pseudospectral method according to (9) (without the nonlinear
part). Apart from this limit method, the values of the stability constants for practical methods are
all of the same order of magnitude.

TaBLE 1
method
time space stability restriction on At/Ax®
I—f 2nd order 2/3.3 ~ 0.3849
I—f 4th order 54/,/(25762 +4234,/73) ~ 0.2170
I—-f 6th order — 0.1621
I-f 8th order — 0.1347
1-f limit of 1/n ~ 0.0323
increasing orders
proposed scheme 3/2n2 ~ 0.1520

In the last section of the paper we will analyse the accuracies of these methods as functions of
Ax for a strongly nonlinear solution. We will in particular compare the proposed scheme, which
formally is of infinite order of accuracy, with the difference methods of finite orders. Since the
maximal time step is proportional to the cube of Ax, it is important to know how large the values
of Ax may be for different levels of overall accuracy.

If the linear term is f K(x—£) u; df instead of u,,,, the finite difference methods are no longer
applicable. The stability limit for the proposed scheme depends on the associated dispersion rela-
tion. In the case K(x) = {ne—#"! the condition is of the form A{/Ax < constant.

4, SOLITARY WAVE INTERAGTIONS

We first use the numerical method to study the interaction of solitary waves for the equations
noted in §1. For the original K. de V. equation (2), the solitary wave solution is

u = 3a?sech? {(ax— o), (19)

where the parameter o determines both the amplitude and speed. In the modified form (3), the
corresponding solution has

u? = 3(p+2) a?sech?ip(ox — o). (20)
(For p = 1, there is a different normalization factor of 2 between (2) and (3), and between (19)
and (20).) When pisodd, (20) is a positive wave with 4 > 0; if the sign of the nonlinear term in (3)
is changed, thereis a change of sign in (20) and the solitary wave hasu < 0. When p is even, either
sign may be taken for # in (20); there are no solitary wave solutions, when p is even, if the sign of
the nonlinear term is changed in (3).
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378 B. FORNBERG AND G.B. WHITHAM

Figures 1-6 show typical interactions for the original K. de V. equation and its modified forms
with p = 2, 3, 4. For the K. de V. equation, an explicit analytic formula was given by Gardner,
Greene, Kruskal & Miura (1967, 1974) for the interaction of N unequal solitary waves. If the
parameters are &, %, ..., dy, it may be written

u = 120%In |D| /02, (21)
where | D] is the determinant with elements
D =6 <+ 2 e~ %m@—Lm)+omt (22)
mmn mn am “n b

384

300

200

100

| | |
0 100 200 X 256
Ficure 1. Solitary wave interaction for u, + uu, + tys, = 0.

the subsidiary parameters x,, controlling the initial separation of the waves. A similar formula is
available in the case p = 2. From these formulas it can be deduced that the solitary waves
eventually emerge unchanged, the only memory of the interaction being a constant displacement
of the position from the path each one would have otherwise followed. For the interaction of two
waves with parameters «, > «,, the stronger wave has a forward shift and the weaker wave a
backward shift, given respectively by

1 (ﬂi“—l)z 1 (E‘fzi"-‘-l)z (23)

Ay \Olg—aty o \og—ay

These formulas apply to both cases p = 1 and p = 2.


http://rsta.royalsocietypublishing.org/

-

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A

A
s
"Q\ \

/7

9

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

NONLINEAR WAVE PHENOMENA 379

This  clean interaction’ of solitary waves is seenin figures 1-3. For the K. de V. solution (21), it
has been shown by Lax (1968) that the character of the interaction between any pair of solitary
waves changes according as the ratio of their speeds is below, between, or above the critical

values
1(344/5) = 2.618 and 3.

In the calculations of figure 1, the speeds were chosen to be
af = 0.55, of =0.40, af=0.14,
so that a?fal = 1.375 < 2.618 < af/al = 2.857 < 3 < af/a} = 3.929,

and all three cases were included. For the (1, 2) interaction, with speed ratio below the lower
critical, there are always two maxima; the waves approach each other and exchange réles, but
then shear away and do not pass through each other. In the (1,3) and (2, 3) interactions the
waves pass through each other and in each case the smaller maximum disappears during this
process. For the (1, 3) interaction, with speed ratio above the upper critical, the larger maximum
just decreases to a certain least value at time ¢ = T then increases again. Attime ¢ = 7 there is just
a single maximum; the interaction is symmetric in time about ¢ = 7. For the (2, 3) interaction
with speed ratio between the critical values, the larger maximum decreases and disappears, but
before this happens a new maximum replacing it has appeared at a displaced position and takes
over its role. At the point of symmetry in time there are two equal maxima. This however can not
be seen clearly in figure 1.

For the modified equation with p = 2, the interaction of the two positive solitary waves shown
in figure 2 appears as close approach and interchange of réles, whereas for the positive and
negative waves in figure 3 the impression is one of the waves crossing. For two positive waves, the
stronger wave weakens during the interaction and then recovers. During the interaction with a
negative wave, a stronger positive wave increases in height and narrows. The smaller wave disap-
pears on its front and is recreated at the back.

For the modified forms with p > 3, exact solutions for interactions are not known and it is
believed that this goes along with essential differences in the behaviour. The methods of finding
solutions such as (21) (inverse scattering, Bicklund transformations, etc.) are remarkably
ingenious and the fact alone that solutions have not been found in any particular case would leave
the question open. However, these methods also seem to be closely tied to the existence of an
infinite number of conservation laws of the form

2 P+ 2 Q) =o,

[ce]
and corresponding integrals P{u}dx = constant,

- 0

if convergent, where P and @ are functions « and its derivatives. It is often possible to make pro-
gress on the existence of conservation laws and then infer the possibility of related methods of
solution. Since the clean interaction of solitary waves was first shown from the explicit solutions
and had previously been considered unlikely, it has also been conjectured that equations with an
appropriate infinity of conservation laws will show clean interactions and those without will not.
The direct connection appears to be the intuitive idea that the infinite number of integrals forces
conservation of the identities of the waves.
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380 B. FORNBERG AND G. B. WHITHAM

In some of the cases for which exact solutions are known by inverse scattering techniques, the
existence of conservation laws and clean interactions can be related to the fact that the equations
can be cast as a completely integrable Hamiltonian system (Zhakarov & Shabat 19%2). Thelatter
appears to be another general way of distinguishing these cases. The conserved integrals men-
tioned above become action variables for the system.

Ficure 3. Solitary wave interaction for u;+ 3u%u, +uy,, = 0.

For the modified K. de V. equation, it is known that there are an infinite number of conserva-
tion laws when p = 1 and 2, but not when p > 3. According to the conjecture, then, interactions
should no longer be clean when p > 3. Figures 4 and 5 show numerical results for p = 3. There
are small but definite disturbances behind the second wave after the interaction that are too
large to be numerical errors. For the case p = 4, shown in figure 6, the development of an addi-
tional disturbance is more obvious, and we easily conclude that the interaction is not clean. The
calculations were not run for the very long times that would be required to resolve the interesting
question of whether the extra disturbance develops into a further solitary wave or is a tail that dies
out asymptotically as ¢-> co.
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NONLINEAR WAVE PHENOMENA 383

Of course, although the interactions for p = 3 and p = 4 are not precisely clean, there is a
considerable preservation of the original waves and the usual interchange of réles.

Figure 7-10 show interactions for the equations (5) and (6) with « complex. If any real solution
(20), with p = 2 is multiplied by a complex number with modulus one, we obtain a complex
solitary wave for (5) or (6). The figures show the interaction of a purely real and a purely imagi-
nary wave. For equation (5), the real part is shown in figure 7 and the imaginary part in figure 8.
The interaction is seen to be clean with the usual displacement in position. For equation (6),
figures 9 and 10 show the real and imaginary parts, respectively. In this case, it is seen that there is
considerable new disturbance introduced into the real part along the path of the imaginary part
and vice versa. There is also a tail following the slower wave after the interaction. These results
again fit the various conjectures, since (5) is known to have the required conservation laws,
inverse scattering applies, etc., whereas (6) is thought not to have these properties.

As a possible counter to the conjecture about clean interactions, Dodd & Bullough (1976,
1977) have shown that the double Sine-Gordon equation

Zyw— Zer = Ay8inEz+ Aysinz

has neither an infinite number of conservation laws nor Backlund transformations, yet their
calculations of solitary waves appeared to show clean interactions.

In our computations on the integro-differential equation (4), described in § 6, we also find clean
interactions and do not at present expect there to be appropriate conservation laws, etc. Before
describing these results, we note briefly some further computations for the modified K. de V. equa-
tion with p = 2.

5. WAVE PACKETS

For some equations there are solutions closely related to the ordinary solitary waves which are
oscillatory disturbances inside a wave envelope, where the envelope has a solitary wave appear-
ance. They have been variously referred to as wave packets, envelope solitons or breathers.

In the case of the complex equation

up+ 3|u|Puy + uyy, = 0,
these solutions can be found directly by elementary means and take the form
u = /2 asech (ax — ft) eilkz—od),
where w/k = -k + 3a?, (24)
fla=—3k2+a (25)
The latter two relations are interpreted as the nonlinear phase velocity and group velocity,
respectively. With appropriate initial conditions, this solution was calculated numerically from

the differential equation. The real part of 4 is shown in figure 11 for the parameter values £ = in
and « = 0.5.

For real u, the corresponding solutions of
U+ 3u2uw +Usppy = 0,

are much more involved. The solution shown in figure 12 was found numerically by taking a
reasonable type ofinitial disturbance and adjusting it until the appropriate solution was obtained.
33-2
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However, an explicit formula can be extracted from the inverse scattering or Hirota’s work

(Hirota 1972); it is

o)

5). Even the direct verification of this

kx—
formula would be laborious, and certainly the more powerful methods were needed for its

) sin (

sech (ax— £t

&
k

|

0
u = 2,/2— arctan
J ox
where the parameters satisfy the same relations asin

24), (2

(

S3ON3IDS

DONIY33INIONT B

TVYDISAHd

“IVIILVWIHLVIN

we estimate from the maximum height

bl

discovery. From the numerical results shown in figure 12

and the group speed that

VYV

B = 0.0067.
we deduce that

k

0.27,
These predictions fitted well with an independent check on the phase speed.

o =

25),

24) and (

(

From the relations in

o = 0.026.

0.13,

Since the exact solutions are known, the numerical results really provide only a check on the

numerical method. But the plots give a more vivid picture of the solution.

ALITIOOS

40

SNOILDVSNVYL

TVAOY dH.L 1vDIHAOSO1IHd

Ficure 11. Real part of complex wave packet for u;+ 3|u|2u,+ gy = 0.
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Ficure 12. Real wave packet for u;+ 3u%u,+ iy, = 0.
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NONLINEAR WAVE PHENOMENA 385

6. THE INTEGRO-DIFFERENTIAL EQUATION

The Korteweg—de Vries equation was originally proposed in the context of water waves. While
it is successful in predicting the existence of the observed solitary waves, it does not lead to a
wave of greatest height with a peaked crest or to the other breaking phenomena of water waves.
This is not surprising since it is based on long wave approximations and may be quite poor for
short wave phenomena. To retain the valuable long wave behaviour but soften the third deriva-
tive term for short waves and breaking, the integral term in (4) was proposed (Whitham 1967,
1974 §13.14). The motivation is explained in detail in the original references. The aim was to find
an approximate simple model to discuss some of the qualitative issues of breaking, stimulated by
but not restricted to water waves. (For recent work on the full equations of water waves, see
Longuet-Higgins (1976).)

The kernel K(x) can be chosen to give any required linear dispersion relarion w(£), by taking it
to be the Fourier transform of the phase velocity ¢(k) = w(k) /k. The K.de V. equation (with an
additional term u,, normalized out in (2)) is recovered from

c(k) = 1—k2, K(x) = 8(x) +6"(x). (26)
The choice c(k) =v¥/(v2+£2%), K(x) = jve, (27)

where » is an adjustable parameter, is of particular interest, since it has some of the desirable
features, and allows certain explicit analytic solutions to be found. For » = 1, the first two terms
in the long wave expansion of ¢(£) for small £ agrees with (26). For v = }n, the exponential
behaviour of K(x) as x — o0 is closer to that of water waves. One simplifying feature of (27) is that
K(x) is the Green function for the operator

02/0x2 — 2, (28)

and the equation can be reduced again to a differential equation. In the water wave context we
have worked with a normalized form with a factor § in front of the uu,, term in (4) and our results
are quoted with that choice. The reduced differential equation for (27), with (28), is then

(02/0x2 — v?) (uy + Juu,) +u, = 0. (29)

This equation has solitary wave solutions, found as usual by taking « to be a function of ax — B¢
and integrating the resulting ordinary differential equation. The solution may be written

1—Cz (1+z\2P a—u\t
—az+pt — [ = -
¢ 1+Cz(1—z) » 2 (b—u)’ (30)
v (1—1m?\} Ve,
where o ZE(T—-—%{) , b= 7 o2

a=§(1+3m) (1-m), b=§(1—}m)(1+m), C=(b/a)}

and mis an arbitrary parameter in the range 0 < m < 1. The solution has - 0 as |x| — 00, and an
amplitude = a at x = 0. As m decreases from 1 to 0, the amplitude a increases from 0 to &, The
velocity /e increases from 1 to 4. For this equation there isindeed a wave of greatest height with
a sharp corner at the crest. It is given by the limit m— 0, and in this limit the solution simplifies

down to just
u = Se—o-itl, (31)
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386 B. FORNBERG AND G.B. WHITHAM

In the numerical work we first considered the interaction of these solitary waves and were
particularly interested to see what would happen to the wave of limiting height; a preliminary
thought was that any interaction might make it break in some way. However, the result is as
shown in figure 13, where the limiting wave overtakes one of smaller amplitude. There is the
interchange of identities without the waves passing through each other, and as far as we can see
the interaction is clean. This calculation and the perfect emergence of the peaked wave was taken
to be a sensitive test of the numerical method.

Ficure 13. Solitary wave interaction for integral equation
g+ Juy— Suy + [K(x = E)ug dE = 0, K(x) = yvev™, v = In.

In view of the complicated form of the solitary wave (30) in this case, it seems unlikely that
analytic formulas will be found. In all the known cases the interaction formulas express some
transformed variables as sums of exponentials. The right hand side of (30) might appear to be
such a transformation, but it involves the parameters of the particular solitary wave in a non-
trivial way. It is different for each solitary wave so it is hard to see any kind of superposition.

The possible form of conservation laws gets a little clouded when an integral term is included
asin (4). Since a convolution integral is allowed in the equation, should convolutionintegrals and
other functionals be allowed in the conserved quantities? Presumably they have to be. This
question can be by-passed for the case of (29) which we studied numerically, but at present we do
not know whether it has an infinite number of conservation laws or not. Our view is that the inter-
actions we have computed are clean, and that it is a sufficiently complicated case to make exact
solutions etc. unlikely.

The other main interest in this problem is whether, in addition to the peaking of the solitary
wave at the crest, the forward breaking typical of shallow water theory is also possible. To study
this, we took as initial disturbance a roughly triangular shape with height 0.48 and width 1.6.
The slopes of the sides are 0.6, and this is much steeper than the maximum value of 0.17 in the
corresponding solitary wave of the same height. The height is considerably less than the value of
8/9 for the highest solitary wave; and the slope is less than the value 2r ~ 0.7 for that wave. The
results are shown in figure 14. The forward face near the top steepens and eventually breaks. The
observed velocity of the crest is approximately 0.75. This fits well with the nonlinear velocity
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NONLINEAR WAVE PHENOMENA 387

3u/2, which is 0.72 for the maximum value « = 0.48. It supports the view that the breaking is
the usual one associated with the operator

Uy + Justy,
but the whole picture is much more complicated. The breaking seemed to depend on the forward
face being steeper than the maximum for the corresponding solitary wave. Seliger (1968) had found
a sufficient condition based on an initial asymmetry of the wave, with the forward slope greater
than the rear slope. We saw no evidence that this was involved; however, it was known to be a
very loose sufficient condition, far from necessary.
48+
44-
40-
36
32-
28-
24
20
16
12
11t.0~’ )

051
L0

25 5 64 15 0 x 128

F1cure 14. Wave breaking for integral equation
g+ Junty + [K (x— E)ug dE = eup,, K(x) = fpe™e, v=13n, e<L1.

In order to continue the calculation beyond breaking a small dissipation term eu,, was added
to the equation, so that the breaking part could be replaced by a thin transition layer. In reality
there remains a little jagged appearance to the breaking region, but the overall behaviour seems
to be given correctly. In this case it should be remembered that the calculation is made with
conditions periodic in x. We show two periods in figure 14; the latter waves include those from
repetition of the initial conditions into the other periodic intervals.

The overall pattern in figure 14 appears to be that the main wave dies out as a similar one is
formed at a displaced position ahead, the behaviour being reminiscent of the forward displace-
ment of the stronger wave in soliton interactions. The breaking is superposed on this, but is not
responsible for it. It would be interesting to check this for non-breaking waves. The small curved
wavelets seen emanating from behind the breaking crests follow approximately a locus that fits
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388 B.FORNBERG AND G. B. WHITHAM

with the idea that they are riding on the main disturbance with velocity 3u/2; they have fairly
high wavenumbers so have little contribution from the phase speed (27) of the integral term. As u
increases they curve around and merge into the next main wave also travelling with speed 3u/2.
These interpretations are tentative, however, and considerably more numerical work would be
needed to understand the details fully.

7. STEPS AND WELLS

The interaction of solitary waves has naturally drawn a lot of attention, but there are many
other important problems. One basic one is to find the disturbance produced by an initial step.
Such a solution is often useful as a building block and provides useful insight. In gas dynamics a
compressive step would produce a shock wave. In the dispersive problems considered here, the
equations are reversible, thereisno dissipation and thesolution musthavequite a different charac-
ter. In the setting of plasma dynamics these solutions are often referred to as ‘collisionless shocks’.
In water waves they may have relevance to smooth non-turbulent bores, although even in the
absence of turbulent breaking, friction still seems to play an important réle.

For the Korteweg—de Vries equation, the problem of a step can still be formulated via inverse
scattering in terms of a Marcenko integral equation, but the solution has not yet been found (to
our knowledge). However, results of the earlier modulation approach (Whitham 1965, 1974)
have been used by Gurevich & Pitaevskii (1974) to give the main features of the solution. The
modulation approach was developed for the oscillatory solutions which are typical of dispersive
problems when individual solitary waves are not involved. The local shape of the oscillations is
known and equations for the local amplitude a(x, #), local wavenumber £(x, t), and mean level of
disturbance i(x, f) can be derived. For the K. de V. equation these are hyperbolic and the solution
for a step is a centred simple wave in which two of the Riemann invariants are constant every-
where, and g, £, & are functions of x/¢ alone.

For an initial step that increases the level we take the normalized values

-1, x>0,
u(x, 0) = { ’
0, x<0,
The oscillatory disturbance is confined to
-2 <xft< =4, (32)
and in this range the solution is given by
_ @ __= __ E(s) 9
= k=Gxey TR (33)

where K and E are the complete elliptic integrals and the modulus s is the function of x /¢ deter-

mined by
2—-s* 2 S2(1-sHK(s)  « x 1
3 P3E-(-®KG) ¢ 25i<"% (34)

These quantities are shown in figure 15 and the detailed solution constructed from them is shown
in figure 16. Near the front of the wave (x = — 1£), s— 1and thefirst oscillationsare close tosucces-
sive solitary waves. Near the back (¥ = — 2¢), s 0 and the solution is nearly linear.

This problem was solved numerically, from the K. de V. equation, and the results are shown in
figures 17 and 18. The roughly linear increase in amplitude and smoothed step appearance of &
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390 B.FORNBERG AND G.B. WHITHAM

According to general theory individual values of ¥ propagate with the corresponding group velo-

city and we have

x~ —3k%, k~[x/(—31)]3

in this region. Individual crests, however, travel with the phase velocity

w/k = —k*~ x/31.

Therefore, they follow paths xoc — 3,

These curves are easily seen in figure 17.
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Ficure 20. Numerical calculation for initial well.

Ficure 21. Numerical calculation for initial well.

Ficure 22. Numerical calculation for initial well.

When the initial step decreases the height, we take the normalized form

0, x>0,

u(x,0) = {

-1, x<0,

initially. In the approximate theory, the solution is simply

d=xft, —1<x/t<0 (35)

and a = 0; there are no oscillations. This is just the appropriate solution of

ity + Wi, = 0 (36)

neglecting the #,,, term. The numerical calculation confirms this result as shown in figure 19.
There is a small oscillation which is missed by the simple theory and is related to smoothing out
the discontinuous derivative at x/¢ = — 1.
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NONLINEAR WAVE PHENOMENA 391

The solution for an initial well combines the two step solutions. It consists of a linear profile asin
figure 19 followed by an oscillatory disturbance of the type shown in figure 17. As the two parts
interact the triangular shaped wave at the head stretches in length and decays in amplitude. The
detailed numerical results are shown in figures 20-22.

In gas dynamics and similar dissipative systems, the triangular wave is a familiar solution. In
those cases the discontinuity at the rear is a shock wave and there is no oscillatory tail. In suitable
normalized form, the approximate solution satisfies (36) and is given by

{x/t, —s(t) <x <0,
U =
0, otherwise,

where x = —s(¢#) is the shock position. The determination of s(¢) depends on the choice of the
correct shock condition. It leads typically to the condition:

velocity = { x strength

. .
ie. $=33 5= Ctt, strength = Ct%. (37)
3539 e
Pl * ‘.f.
Ins | s Y L
; o"“
3.0 o® v 1
o 4
16 o %
9 r ] /.’/"
—at N /‘/
o

original position
of right end of sink

ond S
2.0 s 7ero
level
‘.5" ¢ ‘.
T c4 T ]‘. T T ZI Inl ‘ ('; T
0.8 16 3.2 64 128 ¢ 256

Ficure 23. Numerical results for width s, as a function of ¢. The dotted background line has slope exactly %. The
slopes corresponding to different exponents are shown above.

Since the triangular wave has width C¢ and depth Ct—%, it is immediately seen that this corres-
ponds to constant area, i.e. J.

%)

udx = constant. (38)

-
In gas dynamics « is proportional to the density and this choice of shock condition is equivalent to
conservation of mass.

In the dispersive case, we might try to view the result as a triangular wave for the mean level %,
with the oscillatory tail superposed to carry energy away in place of dissipation. Then we have a
simple approach that would perhaps be helpful in other more complicated problems. A key
question would be the correct choice of ‘shock’ condition. Conservation of mass (or volume) with
the results in (37) would still be a candidate. However, it is possible that mass as well as energy is
transferred under the oscillatory tail. An alternative is suggested by the simple step solution.

According to (34) the front in that case propagates according to x/¢ = — %, i.e. the velocity is } of
the strength. This condition would give
§=14s/t, s=Cth, strength = Ct3, (39)

34-2
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392 B. FORNBERG AND G.B. WHITHAM

in the more general context. It is intersting that this choice corresponds to the conservation of

|7 iapay

because this quantity is also important in various ways in the discussion of solitary waves (Whit-
ham 1974, §17.5).

From the numerical results, it is possible to get a very clear plot of 5, and the exponent % is quite
definitely indicated (see figure 23). The exponent } is also found in the theoretical discussion of
Ablowitz & Segur (1977).

8. WAVETRAIN INSTABILITIES

Periodic wavetrains are basic solutions in dispersive problems. Among other things, they are
used to develop the modulation theory referred to in the last section. In the nonlinear case, they
may beunstable to small disturbances. One way to see this is from the modulation theory itself. For
the simplest problems, (when there is no coupling of the oscillatory disturbance with various
mean levels such as the # of the last section), the modulation equations for the local amplitude
a(x,t) and local wavenumber £(x, t) are approximately

kt’ + Cl)z = 0,
(ag)t + (wl,) az)x =0,
0 = C’)0(1‘7) + O)Z(k) a?— %w:)l(k) azx/a;

wy (k) is the linear dispersion relation and w,(k) is the coefficient of the linear correction. For the
uniform wavetrain, @ and £ are constant, and it is easily shown that perturbed solutions in the

form
da, 8k oc eir@=V?t)

have V = 0w + (wg 0y a + og2u?)t.
If wgw, > 0, the values of V are real and give nonlinear generalizations of the linear group velo-
city wg. If wgw, < 0, small modulations will grow for values of 4 in the range

0 < p? < 4|w,/wy| a2
The growth rate depends on (| wg 0, @ — og2u?)i, (40)
and is a maximum for W2 = 2|wy/wg| a?. (41)

One of the earliest and most interesting instances of this instability is again in water wave theory.
For waves on deep water
w = (gh)}, 0, = $k*(gh)},

so we have wyw, < 0. The analysis has to be extended for finite depth. For the Korteweg—de
Vries equation, for example, the additional variable # appears in the modulation equations and
the wavetrains are stable.

In order to study this situation and the further development of disturbances numerically we
chose one of the simpler examples where the instability is found, and the equation

U+ 3uuy +uy,, = 0 (42)

is such a case. For it has Wy = —Fk3 Wy =%k, wyw, < 0.
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NONLINEAR WAVE PHENOMENA 393
The growth rate in (40) is Bkpu(3a? — u2)s, (43)
with a maximum for n = %a.

The computations were first run with the known exact periodic wavetrain solution as initial
condition. Since it should just translate with constant velocity and without change in form, the
idea was that this would check out the method. Results of the type shown in figure 24 were found.
Small numerical errors triggered the instability automatically, and there was no need to add them
explicitly in the initial data. It should be stressed that it is not that numerical errors grow, but
that they act as perfectly good initial perturbations.

3840 o o d\ 1> | 76801
L f///%/%%/
.
e
3000+ %ﬁ/@;};&%{% %; o |
- o
.
lSoag et o | R SO S e
P eQed
=~y v Y iy 0
= . e
| s o B e
S s
//////Z%//////%/ . U
o ///%/// ao0o] (N ANEN
10 a o 10 ~ N
2l ///////%/%//%/ ] ] SO
0 50 100 x 128 0 50 100 x 128

Ficure 24. Instabilities of nonlinear wavetrain.

We were surprised not so much by the complete returns to the uniform wavetrain (which may
be similar to the periodicity found by Zabusky & Kruskal (1965) for the Korteweg—de Vries
equation), but by the long intervals between the earlier bursts, and the persistence of returns for
the very long times shown in figure 24. However, it is true that approximate theories involving
the interaction of a finite number of Fourier modes predict this. For the finite system, initially
small modes grow taking energy from the others, but eventually they in turn lose energy to the
others and die away again. The energy in the system, which is conserved, oscillates between the
modes. An appropriate version of this type of theory is used to interpret our results.
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394 B. FORNBERG AND G. B.WHITHAM

It starts from a study sideband interactions, following Benjamin’s original analysis of the
instability of deep water waves. We note some of the details for (42). Solutions of the form
u = 3A4,(t) et*® + A4, (t) ei®k-mz 4 14, (¢) el®+»2 4 complex conjugates are considered, where the
sidebands 4; and 4, are initially small. In the nonlinear interactions, various products feed back
on the original components. For example, triple products with exponents

k+lu’: k"/’”a —k

produce a contribution to the term ei**. When these resonating third order interactions are

included but all others are neglected, and the generation of modes such as £ + 2 is neglected, we
have

(i/k) ddo/dt+ kA, = {§4, AF + 34, AF + 34, A3} 4, + 34, 4, AF, (44)

[/ (k= )] dd,/de+ (k= p)?dy = {34y AF + 34, AT + 34, AT}A, + §43 4, (45)

and a similar equation for 4,. The first terms on the right represent self-interaction and the effect
of each wave riding on the others. It is the last term that produces the energy transfer.

If these equations are linearized on the basis that 4,, 4, < 4,, the previous instability result
(43) is recovered with the sideband interpretation for #. But we can take the analysis further
without making the linearized approximation (Benney 1962; Bretherton 1964). The key to this is
that three integrals of the equations can be found:

|4|? | [44]% |4
E T E—p hrp
| 4o|2+]4,]2+ |4,]% = constant, (47)
AFATAT + AF2A; Ay~ §URP| Ao |2 + (5 + p) 2| Ay |2+ (k= p)?] 4,] %
+2{] 4o |2 Aa |2+ [ Ao || Ao|? + | Ay |* 45] 2} + ${] 4o|* + | 4,]* + | 42]%} = constant.  (48)

= constant, (46)

These can be derived by applying Noether’s theorem to the invariances of the corresponding
variational principle. The more forbidding one, (48), is in fact the simplest and comes from the
invariance in time; the others follow from invariance to phase changes in the complex ampli-
tudes 4,,. (These and other details are noted in appendix A.) When the integrals are used, a single
equation for |4, |?, say, can be obtained, and it has solutions in terms of elliptic functions. In the
limiting case when the modulus tends to 1, the period tends to infinity and we have a single swing
given by

|4,)? - |4,]2 - a*— |4,

k—p k+p 2k

1642(a®— 2442) [k

R a?) + (162 — a?) cosh 6ku (Ya? — u?) it (50)

(49)

This shows the growth of the side bands in accordance with (43), but a maximum is reached and
the side bands decay again.
For the side bands of maximum growth rate we have # = 4a and the maximum value in (50)
gives
IME%%M#%hQW,%W%H@%’ (51)

The time scale, estimated as the time taken from 10 9, of maximum to the maximum is

T = 2.5/ka?. (52)
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NONLINEAR WAVE PHENOMENA 395

To see whether this solution could be used to interpret the bursts seen in the computations, the
amplitudes of the individual harmonics in the numerical results were noted. Since the problem
was formulated to be periodic over a large space interval and the Fourier method used, these
were readily available. Results are shown in figure 25. The wavenumbers present are integer
multiples of a basic unit which in the cases shown is g 7. In figure 25 the initial wavetrain has
a = 0.2, k = 7 units. The initial function in this run was actually 0.2sin (;%7x) with no higher
harmonics present. This is why in figure 254 we can see a fast oscillation between mode 7 and the
first higher harmonic, mode 21.

As other test runs show (with precise uniform wavetrains as initial function) this oscillation
does not in any noticeable way influence the wavetrain instabilities we are studying, not even
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Ficure 25. Amplitudes of harmonics in wavetrain instabilities.
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how quickly they are triggered. According to (43) the most rapidly growing sidebands have
# = 0.1 ~ 2 units. The wavenumbers present are indicated by the integers over the maximum
points in the interaction, in the same order top to bottom as the curves. The two sidebands
k—upu=>5 and £+ p = 9 are the dominant ones as the simple theory would indicate. However
modes with wavenumbers £ + mu are also generated; this is because, for example, products with

wavenumbers
k+p, k+p, —k

generate £ + 24, and so on. Although these are not included in the theory (the case of 5 interacting
modes seemed to defy much progress) we can check the general order of magnitude from (51).

These would give
|4, = 0.13, |4;] = 0.09, |4,| = 0.12.
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Ficure 26. Instabilities of nonlinear wavetrain.

This is taken to be good agreement; the extra drain on | 4,| is interpreted as being due to the extra
drain of the additional sidebands. The time scale given by (52) is 7" = 180 whichisalsoreasonable.
The plots of (amplitude)?/wavenumber;, which are significant quantities in the solution (50) are
shown in figure 25 4. This quantity is the same for sidebands 9 and 5, in agreement with (49), until
the other sidebands intrude and upset the balance. The second burst in figure 254 appears to be
triggered by sidebands 6 and 8 (4 = 1), which are also unstable but take longer to grow, and then
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they tangle with the recurrence of 5 and 9. For the longer times shown in figures 255 and ¢, there
is more activity in the bursts and increasingly more between the main bursts.

Three cases of sideband instabilities were studied numerically. Apart from the case £ = 4,
a = 0.2 asinfigures 24 and 25, we also computed k¥ = 127, = 0.2and k = 13w, a = 0.3. The times
from the starts of the runs to the middles of the first burst were ¢ = 1360, ¢ = 925 and ¢ = 415
respectively. These also agree very well with a time scale of the form 7" = const/ka?.

When the basic interval is doubled, so that the wavenumber unit is reduced to nt/128, there are
more sidebands in the unstable range and more activity. Results are shown in figure 26, where
itis clear that the bursts last longer, are more complicated and there is only one short return to the
original wavetrain. As the interval is increased further we expect continuous activity after the
first burst.

9. ACCURACY OF THE NUMERICAL SCHEME

The usual way to analyse the accuracy of a numerical scheme is to study the local truncation
error as a function of the mesh spacing. In particular for linear equations, this allows an estimate
of total accumulated errors during a time integration. In the present context, such a study would
be inadequate for several reasons:

(a) Almost all effects we study are due to nonlinear processes. A pseudospectral method (or
any method using Fourier space representation) could depend unusually heavily on the linear
nature of an equation.

(b) Even for linear equations, the accuracy of a pseudospectral method for a non-smooth
solution is not due to small truncation errors but to cancellations of rather large but oscillatory
truncation errors during the time integration.

We would like to have a method of analysis which circumvents these problems, in particular
the point in. (), while still using a test which is local in time (i.e. does not involve actual numerical
time integration).

The instabilities of uniform wavetrains offer a good possibility for such a study of nonlinear
accuracy at least for one particular case of strictly nonlinear effects. In the previous section we
analysed wavetrain instabilities by inserting a main mode and two symmetric sidebands into
(42). The interchanges between these modes were described in equations (49) and (50). The
solution could be followed in time all the way through the instability.

An alternative version is described by Driscoll & O’Neil (1976). We look for any small pertur-
bations v, of the main wave %,, which grow locally exponentially in time. In this way we can only
describe the very beginning of the development of the instability. On the other hand, no assump-
tion is made about the form of the unstable perturbation. Let us consider the specific case of a
uniform wavetrain for the equation

Uy + Buluy + Uy, = 0, x-interval0 to 128, (53)
with main component of u(x,t) given by u(x,f) = 0.3cosv(vx—ct),v = (7x2x)/128 (seven
oscillations within the interval). An approximation of a wavetrain with this leading mode may be
found by substitution into (53):

uy(x—ct) = 0.3 cosv(x—ct) +0.00769624 cos 3v(x — ct)

+0.00019263 cos 5v (x — ct) (54)
+0.00000482 cos Tv(x — ct) + 0.00000012 cos v (x —ct) + ...
= —0.04874619.

35 Vol. 289. A.
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398 B. FORNBERG AND G.B. WHITHAM

In the following, we simplify the problem somewhat by transforming to a frame of reference
moving with speed ¢. Equation /53) becomes

U+ (BuP—¢) g+ Uppy = 0 (55)

and the wavetrain in (55) is now stationary. We substitute u(x, ) = uy(x) +e*y(x) into (55).

Assuming u,(x) is a time independent solution of (55) and ignoring second order quantities in v,
we get ‘

Aty — Vg + UG Voo + 6ttg Vg Yo + Voargr = O (56)

Wy~ Vg + 3(“% vo)x + Vowzw = O (57)

We can transform (57) to Fourier space and, keeping only a finite number of modes, solve the
equation as a linear eigenvalue problem for matrices. The eigenvalues are o with eigenvectors
vy- The unstable perturbations appear as eigenvectors corresponding to eigenvalues with non-
zero real parts. When we increase the number of modes, the eigenvalues o converge rapidly to the
numbers given in table 2. We denote here the main mode as mode 7 and note for each unstable
solution its dominant sidebands. These four solutions are the only unstable ones.

TABLE 2
dominant
sidebands growth rate, o
6, 8 0.0101916188
5,9 0.0184643383
4, 10 0.0220767943
3, 11 0.0130214545

These results also allow a check on the approximate formula in (43). For ¢ = 0.3, k = §m,
M = ¢ymm, the growth rate would be

0.002484 m {18.68 — m2}t,

This would predict instability for sidebands with m = 1,2, 3,4 and the corresponding growth

rates would be
0.01044, 0.01903, 0.02318, 0.01625,

respectively. These are quite good approximations to the values in table 2.

If the space derivatives of (55) are approximated by certain finite difference approximations,
the corresponding unstable modes may be studied by using the same difference approximations
in (56) (but notin (57)). Equation (56) becomes a discrete linear eigenvalue problem.

We restrict this study to discretization in space only (the analysis can be done as well for finite
time steps). This means that it will not reflect the difference between the methods represented by
(9) and (10). For difference approximations of finite width the matrices will have a cyclic band
structure. The equivalent difference formula to the proposed scheme covers the full intervaland
the matrix is a full matrix.

For compact 2nd to 8th order difference approximations to the spatial derivatives the eigen-
values in our example were calculated for number of mesh pointsn = 2%, k£ = 6,7, ..., 11. These
large eigenvalue problems could, because of their structure, be handled efficiently by Newton’s
method as described by Peters & Wilkinson (1978). For the full matrices generated by the
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NONLINEAR WAVE PHENOMENA 399

proposed scheme, routines from EISPACK (Smith et al. 1974) were used with values of # ranging
from 64 to 160.

The growth rates in the numerical schemes were compared against the values in table 2 and the
relative errors were calculated. The logarithm (base 10) of the largest of these errors for any of the
four modes is plotted in figure 27 for all cases that were tested.

total number of mesh points
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Ficure 27. Comparison of nonlinear accuracies in numerical schemes. Gurve () 2nd order method, () 4th order
method, (¢) 6th order method, (d) 8th order method. @, proposed method.

The curves in figure 27 for the 2nd to 8th order methods are smooth but for the proposed
scheme rather irregular. This irregularity should be expected since the scheme attempts an exact
treatment of all modes present. For 7z increasing, high harmonics of the dominant mode 7
suddenly appear in the range that is correctly treated instead of being either lost or incorrectly
fed back on top of a sideband.

Figure 27 shows that the advantage of high order methods, well known for linear problems, isat
least as pronounced for this strongly nonlinear problem. To achieve the same accuracy as the
proposed scheme for 128 points (the resolution we used in most of the numerical calculations) a
second order scheme would need about 10000 points. Already in one space dimension and for
implicit schemes without a stability condition Af/Ax® < constant, a method of such low order
seems to compare unfavourably. Difference schemes of higher orders are much more attractive.
Implicit high order methods have however the drawback that the operation count per time step
increases quadratically with the order and not linearly as for explicit schemes.

This research was supported by the Office of Naval Research, U.S. Navy and by E.R.D.A.
(Grant 04-3-767).
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400 B. FORNBERG AND G. B. WHITHAM

APPENDIX A. DIscUSSION OF EQUATIONS (44)—(45)

These equations follow from a variational principle with Lagrangian

L= 3o (4G - A+l 1AL -1 3 44
—%{A%ATA§+A3‘2A1A2}, (A1)

where summation is over # = 0, 1, 2, and
ko=k, ky=k+p, ky=k—p. (A2)

This can be seen directly or derived from the variational principle

6”(—2¢x¢t+2¢;x—¢3) dvdt = 0 (A 3)

for the modified K.de V. equation (42) with 4 = ¢, and

p=-X 5;—{' 4, eikik 4 c.c. (A4

n

When the Lagrangian is invariant to translations in time, Noether’s theorem gives the integral
b (AjL‘;j+A*LA; — L) = const.
g
Applied to (A 1), this leads immediately to (48).
The other obvious invariances in (A 1) are changes in phase

4, -4, eln,
with 26y —€,— €5 = 0.
The corresponding integral according to Noether’s theorem is
3 (ie; 4; Ly, —ie; AF Lyz) = const.
J

This leads to two independent invariants; with e, = €, = ¢, we obtain (46), with ¢, = £,, we have
(47).

The remaining major step in simplifying the equations for the 4,, is to note that the symmetric
terms on the right of (44) can be eliminated by multiplying it by 4§ and taking the difference of

the resulting equation from its conjugate. This gives

A3 AF A A A A, = —%c%mop. (A 5)

We then note that (48) may be used to express the related quantity

as a function of | 4|2, |4,|2, |4,|? alone.
If we square these and take the difference, we have

4 (d]|4,]3\?
2 (L) = oot (A
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From (46) and (47), |4,|? and |4,|2 may be expressed in terms of | 4y|2; the right hand side is then
a quartic in |4,|? and solutions may be obtained in elliptic functions. A limiting case is the solu-
tion quoted in (49).

ArpPENDIX B. INSTABILITIES OF THE PROPOSED SCHEME

One well known feature of leap-frog time differencing is the possibility of separation of the
solution between two successive time levels. There is no way for the leap-frog scheme to detect if
every second time level has a constant value added to it. If the solution is accurate, this separation
should not occur (since every level approximates a unique solution). In the present calculations,
no separation occurred for soliton interactions. The effect appeared however in the calculations
of the unstable wavetrains. This could be expected since small roundoff errors, uncorrelated for
odd and even time steps, triggered large scale effects for unstable solutions. This possibility of
separation has sometimes been considered a major weakness (see Gazdag 1976 for references)
making leap-frog not a competitive method. The problem is however easily circumvented. When
we have calculated the solution up to levels ¢ — At £, and ¢+ At, we can introduce levels £ — $At,
and ¢+ 1At as averages of adjacent levels and restart the scheme from these two new levels. This
process was repeated every 40 time steps in the calculation of the unstable wavetrains.

The commonly suggested alternative would be to use an Adams—Bashforth type scheme or to
use leap-frog only as a predictor together with a corrector linking the latest two time levels to
each other. It is not obvious how to implement this in a stable way based on analytic solutionof
the linear part.

Another possibility of separation in leap-frog type schemes is that every second mesh value for
fixed ¢ may separate from every other second value. For the simplest approximation of du /0 +
Ou/0x = 0 with centred differences in both space and time, the separation is complete and the
scheme falls apart in two separate schemes, each on its own grid. In our case there is no complete
separation, but frequency component 65 (which corresponds to the separation of every second
point on a grid with 128 points) behaved in a few cases slightly irregularly. It was cut out of every
40 time steps, every 80 time steps components 61-65 were cut out. This control of possible de-
coupling of the scheme should not be interpreted as smoothing to supress nonlinear instabilities.

It was shown by Fornberg (1973) that nonlinear instabilities for u;+ uu, = 0, approximated
by a leap-frog scheme, can be expected only where « is close to zero. This is at places where small
irregularities in the solution are stationary relative to the mesh. Nonlinear instabilities observed
in the present calculations follow the same pattern. No instabilities were observed when thelinear
part was #; +,,, = 0. Small irregularities contain high frequency components and are never
stationary. With the integral kernel K(x) = {ve—?! in (4) very high frequency components are
translated only by the nonlinear term. In very few cases, nonlinear instabilities were now ob-
served, but they could always be avoided by introducing a translation with an extra u,-term, i.e.
without any dissipation. The soliton interactions in figure 13 were actually calculated from the
equation

ut+g~uuw+f1((x—§)u£d§=0 (B 1)

instead of Uy + Jun, — Ju, + fl((x — &) ud§ = 0.
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402 B.FORNBERG AND G.B. WHITHAM

In figure 13 the curves have been shifted periodically to compensate for the missing term — 5u,,.
In spite of long intervals with values around zero for (B 1), no instability showed up in this par-
ticular case.

Aliasing

Aliasing refers to the fact that very high frequency components cannot be distinguished from
low ones on a discrete mesh. These high components may have been generated by nonlinear
interactions and they will at later time steps be interpreted as low frequency components. Opin-
ions about this phenomenon as a source of error are very varying, ranging from catastrophic,
Schamel] & Elsisser (1976), to no problem whatsoever, Fox & Orszag (1973). The experiences
from the present calculations as well as from the accuracy analysis agree best with the last
conclusion.

It was shown by Fornberg (1975) that the Fourier method to find derivatives is only a different
way to describe the limit method of classical finite difference approximations of 0/0x with formal
accuracies tending to infinity. The fast Fourier transform can be used to evaluate this limit
efficiently. This is because the problem is equivalent to a periodic discrete convolution, and in the
discrete Fourier space, these convolutions correspond to pointwise multiplications. There are
other transforms, for example the ‘fast number-theoretical transforms’ (Agarwal & Burrus,
1975) which also support fast convolutions. Such transforms could have been used equally well
to implement the proposed scheme. Fourier representation does not necessarily enter in the
calculation. It is not obvious that Fourier space is the most suitable space for theoretical discus-
sions of certain nonlinear effects. (Nonlinear instabilities for example were first attributed to
aliasing (Phillips 1959) after arguments in Fourier space, but later found to have a local and well
defined structure in physical space (Fornberg 1973)).

The situation may however be different if the scheme is advanced in time in the Fourier space.
Then the Fourier representation enters into the calculation.

Technical data for the different runs

The details of the numerical work for the different figures are given in table 3.
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TABLE 3. TECHNICAL DATA FOR THE DIFFERENT RUNS

2N,
mesh total
points number
in of
figure x-direction Ax At time steps comment
1 128 1.0 0.025 15360 Computational period [0, 128]. Figure

shows two copies of the solution side by
side with one of the two sets of interactions
suppressed in the picture.
2 128 1.0 0.05 2400 Centre of interaction computed with the
} {128 0.5 0.008 25000 } refined grid. Not necessary for figure 2
but the two cases were run together.

4, 5, 6, 256 0.5 0.0125 25600
7,8,9, 10 128 1.0 0.05 6400
11 128 0.5 0.01 3200
12 128 1.0 0.05 12800
13 128 0.4 0.008 51200
14 128 0.05 0.005 9600 Actual spatial period [0, 6.4]. Figure
shows two copies of same solution side
by side.
17, 18, 19 512 0.5 0.001 3200 All figures from same run.
Each figure displays 128 points.
20, 21, 22 512 0.5 0.002 12800 All figures from same run.
Each figure displays 128 points.
24 128 1.0 0.05 153600
26 256 1.0 0.05 76800
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